Further Results on the Design of Hybrid Observers

A. Balluchi⁽¹⁾, L. Benvenuti⁽²⁾, M. Di Benedetto⁽³⁾ and A. Sangiovanni-Vincentelli^(1,4)

(1) PARADES EEIG, Rome, I
(2) Dip. di Informatica e Sistemistica, Univ. di Roma "La Sapienza", Rome, I
(3) Univ. di L'Aquila, L'Aquila, I

(4) Dept. of EECS., Univ. of California at Berkeley, CA

Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02

Outline

- Motivations and Previous Results
- **◆ FSM Observer Design**
- **◆ Continuous System Observer Design**
- ◆ Hybrid Observer Design
- Conclusions

Motivations: Power-train control

- ◆ Power-train control was formulated as a hybrid control problem:
 - ▲ Cut-off control [Automatica, 1995]
 - ▲ Fast force transient [CDC, 1998]
- Control algorithms require full state feedback
- It is not economically feasible or even possible to measure the complete state of the system.
- ◆ HENCE ...we need a hybrid observer!

Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02

Previous Results on Observer Design

- Continuous Systems
 - ▲ Luenberger [TAC 1971]: Introduction to observers
 - ▲ Kalman [ASME 1960]: Optimal disturbance rejection observers
 - ▲ Liberzon Hespanha Morse [CDC 1999]: Stability of switched systems
- ◆ Discrete Systems
 - ▲ Ramadge [CDC 1986]: Current-state observability
 - ▲ Caines et al. [CDC 1988]: Current-state tree
 - ▲ Ozveren and Willsky [TAC 1989]: Observability with a delay
- Hybrid Systems
 - ▲ Ackerson and Fu [TAC 1970], Alessandri and Coletta [HSCC 2001]: Assuming location knowledge
 - ▲ Mosterman and Biswas [HSCC 1999]: Model abstractions
 - ▲ Morari [TAC 2000]: Hybrid observers

FSM Observability

ullet An FSM (alive) $\mathcal{D}=(Q,\Sigma,\Psi,\varphi,\phi,\eta)$

$$q(k+1) \in \varphi(q(k), \sigma(k+1))$$

$$\sigma(k+1) \in \phi(q(k))$$

$$\psi(k+1) \in \eta(q(k), \sigma(k+1), q(k+1))$$

- is said to be current-state observable if there exists an integer K
 such that
 - lacktriangle for any unknown initial state q(0) and
 - \blacktriangle for any input sequence $\sigma(k)$

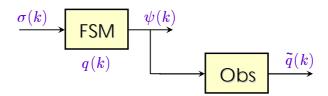
the state q(i) can be determined for every $i{>}K$ from the observation sequence $\psi(k)$ up to i.

Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02

Observers for FSMs



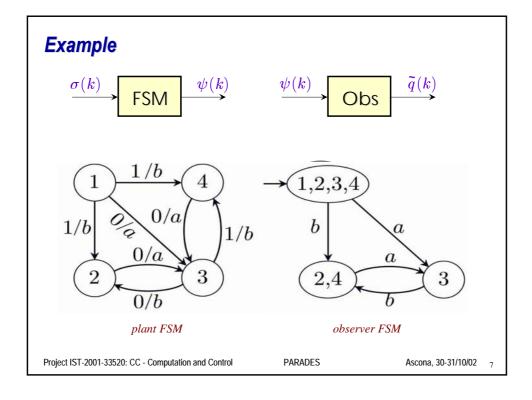
 $\bullet \text{ Given an FSM, an observer is } \mathcal{O} = (Q_{\mathcal{O}}, \Sigma_{\mathcal{O}}, \Psi_{\mathcal{O}}, \varphi_{\mathcal{O}}, \phi_{\mathcal{O}}, \eta_{\mathcal{O}})$

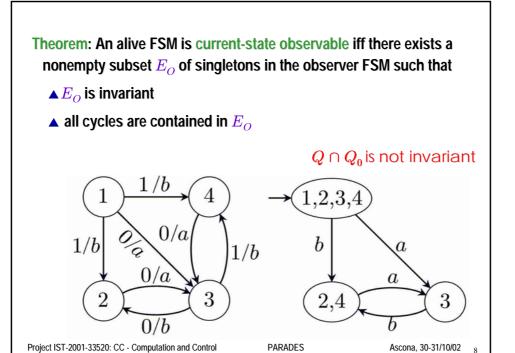
with
$$Q_{\mathcal{O}}\subseteq 2^Q,\ \Sigma_{\mathcal{O}}=\Psi,\ \Psi_{\mathcal{O}}=Q_{\mathcal{O}}$$
 and $\eta_{\mathcal{O}}=\varphi_{\mathcal{O}}$

$$\tilde{q}(k+1) = \varphi_{\mathcal{O}}(\tilde{q}(k), \psi(k+1))
\psi(k+1) \in \phi_{\mathcal{O}}(\tilde{q}(k))
\tilde{\psi}(k+1) = \varphi_{\mathcal{O}}(\tilde{q}(k), \psi(k+1)) = \tilde{q}(k+1)$$

Project IST-2001-33520: CC - Computation and Control

PARADES





Algorithm for Current-state Observability

```
IF (S_{\mathcal{O}} = \emptyset) \lor (C_{\mathcal{O}} \not\subseteq S_{\mathcal{O}}) THEN \mathcal{D} is not current–state observable
                  RETURN
         END IF
         E_{\mathcal{O}} = S_{\mathcal{O}}
         WHILE (\operatorname{Pre}(\overline{E}_{\mathcal{O}}) \cap E_{\mathcal{O}} \neq \emptyset)
                  E_{\mathcal{O}} = E_{\mathcal{O}} \setminus \operatorname{Pre}(\overline{E}_{\mathcal{O}})
         END WHILE
         IF C_{\mathcal{O}} \subseteq E_{\mathcal{O}} THEN
                  \mathcal D is current–state observable
         ELSE
                  \mathcal D is not current–state observable
         END IF
END
```

- Denote by
 - \blacktriangle S_O the subset of singletons
 - $ightharpoonup C_O$ the subset of states in cycles
 - $ightharpoonup E_O$ a subset of singletons

The algorithm

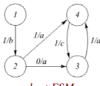
- computes of the maximal set of singletons that is invariant
- tests if contains all the cycles

Project IST-2001-33520: CC - Computation and Control

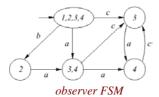
PARADES

Ascona, 30-31/10/02

Examples of Current State Observable FSMs



plant FSM



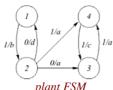
current-state obser.

$$\triangle S_O = \{ \{2\}, \{3\}, \{4\} \}$$

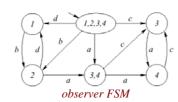
$$Arr$$
 $C_O = \{ \{3\}, \{4\} \}$

$$\triangleq E_0 = \{ \{3\}, \{4\} \}$$

 E_O is contained in C_O



plant FSM



not current-state obser.

$$ightharpoonup C_O = \{\{1\},\{2\},\{3\},\{4\}\}$$

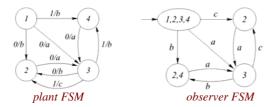
$$\triangle$$
 $E_0 = \{ \{3\}, \{4\} \}$

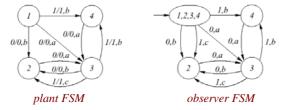
 E_O is NOT contained in C_O

Project IST-2001-33520: CC - Computation and Control

PARADES

Examples of Current State Observable FSMs





not current-state obser.

- $\triangle S_0 = \{ \{2\}, \{3\} \}$
- $\blacktriangle E_0 = \{ \}$

 $C_{\mathcal{O}}$ is not contained in $S_{\mathcal{O}}$

current-state obser. with inputs measurement

- $ightharpoonup S_O = \{\{2\}, \{3\}, \{4\}\}$
- Arr $C_0 = \{\{2\}, \{3\}, \{4\}\}$

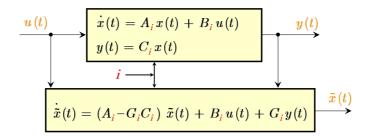
 E_O is contained in C_O

Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02 11

Switching Observers for LTI Systems



The switching observer is globally exponentially stable, if

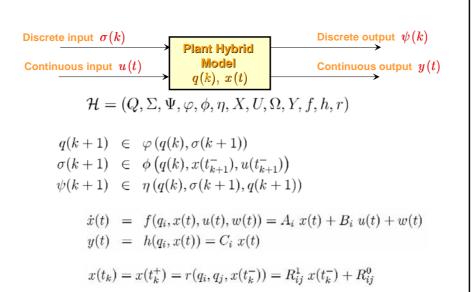
- lacktriangle either the Lie algebra $\{F_i = A_i G_i \ C_i \}$ is solvable
 - **▲** pairwise commuting ⇒ nilpotent ⇒ solvable Lie algebra
- lacktriangle or there is a dwell time $au_D > \sup_{p \in \mathcal{P}} \left\{ \frac{\log c_p}{\mu_p} \right\}$ where $\|e^{A_p t}\| \leq c_p e^{-\mu_p t}$

Project IST-2001-33520: CC - Computation and Control

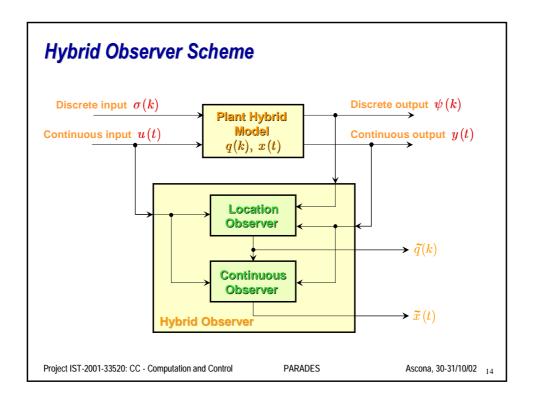
PARADES

State Observation of Hybrid Systems

Project IST-2001-33520: CC - Computation and Control



PARADES



Specification: Exponential Ultimate Boundedness

lacktriangle A hybrid observer is said to be exponentially ultimately bounded if there exist a positive integer K and constants $c \geq 1$, $\mu > 0$ and $b \geq 0$, such that

$$\begin{array}{rcl} \tilde{q}(k) & = & q(k) & \forall k \geq K, \\ \|\tilde{x}(t) - x(t)\| & \leq & c \|\tilde{x}(t_K) - x(t_K)\| \ e^{-\mu t} + b & \forall t > t_K. \end{array}$$

for any hybrid initial state and plant inputs.

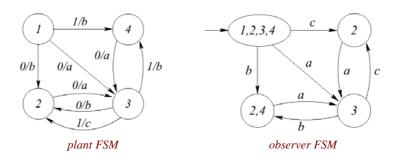
- lacktriangle μ is the rate of convergence
- ♦ b is the ultimate bound
- lacklosim if b=0, the observer is said to be exponentially convergent.

Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02 15

Location Observer Design for Hybrid Plants

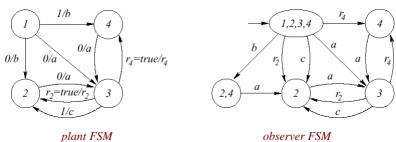


- \blacklozenge The plant is not current-state observable: ${\cal E}_{\cal O}$ is empty .
- Current state observability can be achieved if the difference between the CT dynamics in 2 and 4 can be identified
 - ▲ some additional discrete outputs can be obtained from the CT evolution
- ◆ Signatures are used to detect the CT dynamic parameters

Project IST-2001-33520: CC - Computation and Control

PARADES

Location Observer: Exploiting CT Plant Evolution



um r sin Ooserver r sin

Processing of continuous plant signals cannot be done in zero time. Assume that

- the signature corresponding to the current location of the hybrid plant becomes true before the next transition of the hybrid plant
- all the other signatures (if any) associated to the outgoing arcs of the current observer location remain false

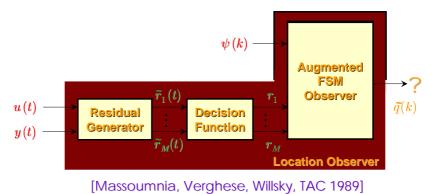
Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02 17

Location Observer Scheme

- ◆ Signature Generation is similar to the Failure Detection and Identification problem:
- " is the system obeying some given dynamics?"



Project IST-2001-33520: CC - Computation and Control

PARADES

Residual Generator and Decision Function

 $\dot{z}_j(t) = (A_j - L_j C_j) z_j(t) + B_j u(t) + L_j y(t)$ **Residual generator:**

 $\tilde{r}_j(t) = C_j z_j(t) - y(t)$

 $r_{j}(t) = \begin{cases} true & \text{if } \|\tilde{r}_{j}(t)\| \leq \varepsilon \\ false & \text{if } \|\tilde{r}_{j}(t)\| > \varepsilon \end{cases}$ **Decision function:**

Proposition 10 For a given $\Delta>0$, $\varepsilon>0$ and a given upper bound Z_0 on $\|x-z_i\|$, if the estimator gains L_i in (23) are chosen such that $A_i-L_iC_i$ have distinct eigenvalues and

$$\frac{\alpha(A_{\ell} - L_{\ell}C_{\ell})}{k(A_{\ell} - L_{\ell}C_{\ell})} < -\frac{\sqrt{n}||C_{\ell}||W}{\varepsilon}$$
(26)

$$\frac{\alpha(A_{\ell} - L_{\ell}C_{\ell})}{k(A_{\ell} - L_{\ell}C_{\ell})} < -\frac{\sqrt{n}\|C_{\ell}\|W}{\varepsilon}$$

$$-\frac{1}{\alpha(A_{\ell} - L_{\ell}C_{\ell})} \log \frac{k(A_{\ell} - L_{\ell}C_{\ell})\|C_{\ell}\|}{\varepsilon + \sqrt{n}\|C_{\ell}\|\frac{k(A_{\ell} - L_{\ell}C_{\ell})}{\alpha(A_{\ell} - L_{\ell}C_{\ell})}W} \leq \Delta$$
(26)

then r_i becomes true before a time Δ elapses after a change in the plant dynamics parameters to the values (A_i, B_i, C_i) , and it remains true till the next transition of the hybrid plant.

Proposition 11 Let m=p, if the matrix $(C_j-C_i)B_i+C_j(B_i-B_j)$ is invertible, with $i\neq j$, then for any hybrid plant initial condition, the class of plant inputs u(t) that achieve $r_j(t)=$ true for all $t\geq t'$, with $t'< t_k+\Delta$, after a change in the plant dynamics parameters to (A_i,B_i,C_i) at some time t_k is not empty.

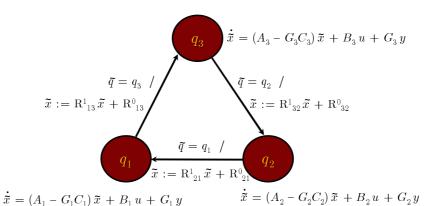
Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02 19

Continuous Observer for Hybrid Plants

◆ A bank of Luenberger's observers with resets and switchings controlled by the identified plant location



Project IST-2001-33520: CC - Computation and Control

PARADES

Continuous Observer: Exploiting Discrete Plant Evolution

- ullet Consider an event $ar{\sigma}$ that can be instantaneously identified
 - ▲ location transition identified without signature
 - ▲ invertibility of $\psi(k) \in \eta(q_i, \sigma, q_j)$.
- ◆ If the system below admits unique solution

$$C_i x = y(t_k^-) \\ \overline{\sigma} \in \phi(q_i, x, u(t_k^-))$$

then the continuous state can be instantaneously identified.

lacktriangle For linear guards $D_{ij}x+E_{ij}=0$, we have $\left[egin{array}{c} D_{ij} \\ C_i \end{array}
ight]x=\left[egin{array}{c} -E_{ij} \\ y(t_k^-) \end{array}
ight]$

Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02 21

Hybrid Observer

- **◆ FSM: Location observer**
- ◆ CT: Continuous observer

$$\begin{cases} \dot{\tilde{x}}(t) = 0 & \text{if } \tilde{q} \in Q_{\mathcal{O}} \setminus E_{\mathcal{O}} \\ \dot{\tilde{x}}(t) = (A_i - G_i C_i) \ \tilde{x}(t) + B_i u(t) + G_i y(t) & \text{if } \tilde{q} = \{q_i\} \in E_{\mathcal{O}} \end{cases}$$

$$\tilde{x}(\hat{t}_k) = R_{ij}^1 \ x(\hat{t}_k^-) + R_{ij}^0$$

▲ for CS instantaneous identification

$$\tilde{x}(\hat{t}_k) = \tilde{x}(\hat{t}_k^+) = R_{ij}^1 \ \tilde{x}(\hat{t}_k^-) + R_{ij}^0$$

Project IST-2001-33520: CC - Computation and Control

PARADES

Plant + Observer Hybrid System

$$\dot{x}(t) = A_i x(t) + B_i u(t) + w(t)$$

if
$$q = q_i$$

$$\begin{cases} \dot{\zeta}(t) &= F_i \zeta(t) - w(t) \\ \dot{\zeta}(t) &= F_j \zeta(t) + v_{ji}(t) - w(t) \end{cases}$$

if
$$\tilde{q} = \{q_i\}$$

$$\dot{\zeta}(t) = F_j \zeta(t) + v_{ji}(t) - w(t)$$

if
$$\tilde{q} \neq \{q_i\}$$

$$v_{ji}(t) = [(A_j - A_i) - G_j(C_j - C_i)]x(t) + (B_j - B_i)u(t)$$
 $F_j = A_j - G_jC_j$

$$F_i = A_i - G_i C_i$$

$$x(t_k) \ = \ x(t_k^+) = R_{ji}^1 \ x(t_k^-) + R_{ji}^0$$

$$\zeta(t_k) = \zeta(t_k) - R_{ji} \chi(t_k) + R_{ji}$$

$$\zeta(t_k) = \zeta(t_k^+) - \zeta(t_k^-) - R_{ii}^0 + [I - R_{ji}^1] \chi(t_k^-)$$

▲ plant transition

$$(q_j,\{q_\ell\}) \,\rightarrow\, (q_i,\{q_\ell\})$$

▲ observer transition

$$\zeta(\hat{t}_k) = \zeta(\hat{t}_k^+) = R_{ji}^1 \zeta(\hat{t}_k^-) + R_{ji}^0 - [I - R_{ji}^1] x(\hat{t}_k)$$

$$(q_\ell, \{q_j\}) \rightarrow (q_\ell, \{q_i\})$$

$$x(t_k) = x(t_k^+) = R_{ii}^1 x(t_k^-) + R_{ii}^0$$

$$\zeta(t_k) = \zeta(t_k^+) = R_{ii}^1 \zeta(t_k^-)$$
 or $\zeta(t_k) = 0$

$$(q_j, \{q_j\}) \rightarrow (q_i, \{q_i\})$$

Project IST-2001-33520: CC - Computation and Control

PARADES

Ascona, 30-31/10/02 23

Main Result

Theorem 12 Given a hybrid system \mathcal{H}_P as in (10-16) that is current-location observable via signatures, with dwell time D and such that matrices A_i in (13) have distinct eigenvalues for each i such that $\{q_i\} \in E_{\mathcal{O}}$, if for each $\{q_i\} \in E_{\mathcal{O}}$ there exists a gain matrix G_i such that

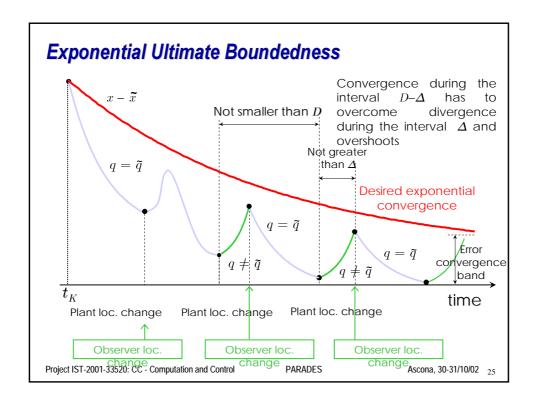
- 1. $A_i G_iC_i$ has distinct eigenvalues;
- 2. the location observer identifies a change in the hybrid system location within time Δ with

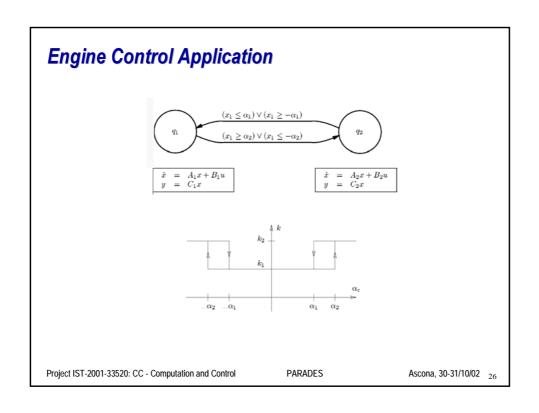
$$3. \ \alpha(A_i-G_iC_i)+\frac{\max\{0,\log[r_i^1\,k(A_i-G_iC_i)]}{D-\Delta}\leq -\mu < 0$$

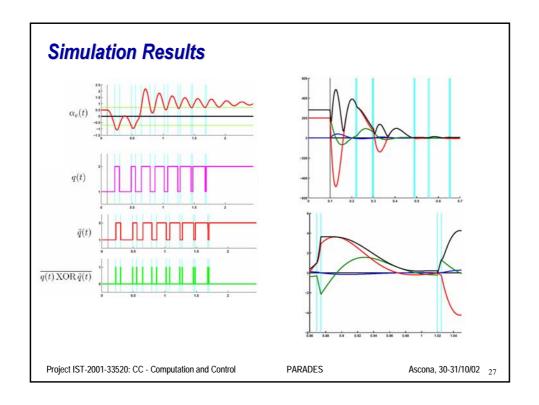
where $r_i^1 = \max_{q_j \in Reach(q_i)} \|R_{ij}^1\|$, then the hybrid observer \mathcal{H}_O is exponentially ultimately bounded with rate of convergence μ .

In the case of absence of disturbances and continuous state resets, any desired value for the ultimate bound can be achieved by choosing Δ small enough. Otherwise, the ultimate bound cannot be lower than a minimum threshold value.

$$||w(t)||_{\infty} = \max_{i=1,\dots,n} \sup_{t>0} |w_i(t)| \le W$$







Conclusions

- ◆ A design methodology for hybrid observers has been proposed
- ◆ This methodology has been recently extended to hybrid plant with subject to continuous state disturbances
- ◆ Techniques exploiting information associated to discrete transitions detection has been investigated in order to
 - ▲ improve continuous state convergence
 - ▲ estimate unobservable continuous state components at transition times
- ◆ Simulation results for automotive driveline estimation have been obtained.